skip to main content


Search for: All records

Creators/Authors contains: "Côté, Patrick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We measure the metallicities of 374 red giant branch (RGB) stars in the isolated, quenched dwarf galaxy Tucana using Hubble Space Telescope narrowband (F395N) calcium H and K imaging. Our sample is a factor of ∼7 larger than what is available from previous studies. Our main findings are as follows. (i) A global metallicity distribution function (MDF) with[Fe/H]=1.550.04+0.04andσ[Fe/H]=0.540.03+0.03. (ii) A metallicity gradient of −0.54 ± 0.07 dexRe1(−2.1 ± 0.3 dex kpc−1) over the extent of our imaging (∼2.5Re), which is steeper than literature measurements. Our finding is consistent with predicted gradients from the publicly available FIRE-2 simulations, in which bursty star formation creates stellar population gradients and dark matter cores. (iii) Tucana’s bifurcated RGB has distinct metallicities: a blue RGB with[Fe/H]=1.780.06+0.06andσ[Fe/H]=0.440.06+0.07and a red RGB with[Fe/H]=1.080.07+0.07andσ[Fe/H]=0.420.06+0.06. (iv) At fixed stellar mass, Tucana is more metal-rich than Milky Way satellites by ∼0.4 dex, but its blue RGB is chemically comparable to the satellites. Tucana’s MDF appears consistent with star-forming isolated dwarfs, though MDFs of the latter are not as well populated. (v) About 2% of Tucana’s stars have [Fe/H] < −3% and 20% have [Fe/H] > −1. We provide a catalog for community spectroscopic follow-up.

     
    more » « less
  2. Abstract We present Keck/DEIMOS spectroscopy of the first complete sample of ultradiffuse galaxies (UDGs) in the Virgo cluster. We select all UDGs in Virgo that contain at least 10 globular cluster (GC) candidates and are more than 2.5 σ outliers in scaling relations of size, surface brightness, and luminosity (a total of 10 UDGs). We use the radial velocity of their GC satellites to measure the velocity dispersion of each UDG. We find a mixed bag of galaxies, from one UDG that shows no signs of dark matter, to UDGs that follow the luminosity–dispersion relation of early-type galaxies, to the most extreme examples of heavily dark matter–dominated galaxies that break well-known scaling relations such as the luminosity–dispersion or U-shaped total mass-to-light ratio relations. This is indicative of a number of mechanisms at play forming these peculiar galaxies. Some of them may be the most extended version of dwarf galaxies, while others are so extreme that they seem to populate dark matter halos consistent with that of the Milky Way or even larger. Even though Milky Way stars and other GC interlopers contaminating our sample of GCs cannot be fully ruled out, our assessment of this potential problem and simulations indicate that the probability is low and, if present, unlikely to be enough to explain the extreme dispersions measured. Further confirmation from stellar kinematics studies in these UDGs would be desirable. The lack of such extreme objects in any of the state-of-the-art simulations opens an exciting avenue of new physics shaping these galaxies. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. Abstract We use deep Hubble Space Telescope imaging to derive a distance to the Virgo Cluster ultradiffuse galaxy (UDG) VCC 615 using the tip of the red giant branch (TRGB) distance estimator. We detect 5023 stars within the galaxy, down to a 50% completeness limit of F814W ≈ 28.0, using counts in the surrounding field to correct for contamination due to background sources and Virgo intracluster stars. We derive an extinction-corrected F814W tip magnitude of m tip , 0 = 27.19 − 0.05 + 0.07 , yielding a distance of d = 17.7 − 0.4 + 0.6 Mpc. This places VCC 615 on the far side of the Virgo Cluster ( d Virgo = 16.5 Mpc), at a Virgocentric distance of 1.3 Mpc and near the virial radius of the main body of Virgo. Coupling this distance with the galaxy’s observed radial velocity, we find that VCC 615 is on an outbound trajectory, having survived a recent passage through the inner parts of the cluster. Indeed, our orbit modeling gives a 50% chance the galaxy passed inside the Virgo core ( r < 620 kpc) within the past gigayear, although very close passages directly through the cluster center ( r < 200 kpc) are unlikely. Given VCC 615's undisturbed morphology, we argue that the galaxy has experienced no recent and sudden transformation into a UDG due to the cluster potential, but rather is a long-lived UDG whose relatively wide orbit and large dynamical mass protect it from stripping and destruction by the Virgo cluster tides. Finally, we also describe the serendipitous discovery of a nearby Virgo dwarf galaxy projected 90″ (7.2 kpc) away from VCC 615. 
    more » « less
  4. ABSTRACT

    The ‘Spectroscopy and H-band Imaging of Virgo cluster galaxies’ (SHIVir) survey is an optical and near-infrared survey which combines SDSS photometry, deep H-band photometry, and long-slit optical spectroscopy for 190 Virgo cluster galaxies covering all morphological types over the stellar mass range log (M*/M⊙) = 7.8–11.5. We present the spectroscopic sample selection, data reduction, and analysis for this SHIVir sample. We have used and optimized the pPXF routine to extract stellar kinematics from our data. Ultimately, resolved kinematic profiles (rotation curves and velocity dispersion profiles) are available for 133 SHIVir galaxies. A comprehensive data base of photometric and kinematic parameters for the SHIVir sample is presented with grizH magnitudes, effective surface brightnesses, effective and isophotal radii, rotational velocities, velocity dispersions, and stellar and dynamical masses. Parameter distributions highlight some bimodal distributions and possible sample biases. A qualitative study of resolved extended velocity dispersion profiles suggests a link between the so-called ‘sigma-drop’ kinematic profile and the presence of rings in lenticular S0 galaxies. Rising dispersion profiles are linked to early-type spirals or dwarf ellipticals for which a rotational component is significant, whereas peaked profiles are tied to featureless giant ellipticals.

     
    more » « less
  5. Abstract

    We use deep narrowband CaHK (F395N) imaging taken with the Hubble Space Telescope (HST) to construct the metallicity distribution function (MDF) of Local Group ultra-faint dwarf galaxy EridanusII(EriII). When combined with archival F475W and F814W data, we measure metallicities for 60 resolved red giant branch stars as faint asmF475W∼ 24 mag, a factor of ∼4× more stars than current spectroscopic MDF determinations. We find that EriIIhas a mean metallicity of [Fe/H] = −2.500.07+0.07and a dispersion ofσ[Fe/H]=0.420.06+0.06, which are consistent with spectroscopic MDFs, though more precisely constrained owing to a larger sample. We identify a handful of extremely metal-poor star candidates (EMP; [Fe/H] < −3) that are marginally bright enough for spectroscopic follow-up. The MDF of EriIIappears well described by a leaky box chemical evolution model. We also compute an updated orbital history for EriIIusing Gaia eDR3 proper motions, and find that it is likely on first infall into the Milky Way. Our findings suggest that EriIIunderwent an evolutionary history similar to that of an isolated galaxy. Compared to MDFs for select cosmological simulations of similar mass galaxies, we find that EriIIhas a lower fraction of stars with [Fe/H] < −3, though such comparisons should currently be treated with caution due to a paucity of simulations, selection effects, and known limitations of CaHK for EMPs. This study demonstrates the power of deep HST CaHK imaging for measuring the MDFs of UFDs.

     
    more » « less
  6. Abstract We present a study of the stellar populations of globular clusters (GCs) in the Virgo Cluster core with a homogeneous spectroscopic catalog of 692 GCs within a major-axis distance R maj = 840 kpc from M87. We investigate radial and azimuthal variations in the mean age, total metallicity, [Fe/H], and α -element abundance of blue (metal-poor) and red (metal-rich) GCs using their co-added spectra. We find that the blue GCs have a steep radial gradient in [Z/H] within R maj = 165 kpc, with roughly equal contributions from [Fe/H] and [ α /Fe], and flat gradients beyond. By contrast, the red GCs show a much shallower gradient in [Z/H], which is entirely driven by [Fe/H]. We use GC-tagged Illustris simulations to demonstrate an accretion scenario where more massive satellites (with more metal- and α -rich GCs) sink further into the central galaxy than less massive ones, and where the gradient flattening occurs because of the low GC occupation fraction of low-mass dwarfs disrupted at larger distances. The dense environment around M87 may also cause the steep [ α /Fe] gradient of the blue GCs, mirroring what is seen in the dwarf galaxy population. The progenitors of red GCs have a narrower mass range than those of blue GCs, which makes their gradients shallower. We also explore spatial inhomogeneity in GC abundances, finding that the red GCs to the northwest of M87 are slightly more metal-rich. Future observations of GC stellar population gradients will be useful diagnostics of halo merger histories. 
    more » « less
  7. ABSTRACT We present a Bayesian method to identify multiple (chemodynamic) stellar populations in dwarf spheroidal galaxies (dSphs) using velocity, metallicity, and positional stellar data without the assumption of spherical symmetry. We apply this method to a new Keck/Deep Imaging Multi-Object Spectrograph (DEIMOS) spectroscopic survey of the Ursa Minor (UMi) dSph. We identify 892 likely members, making this the largest UMi sample with line-of-sight velocity and metallicity measurements. Our Bayesian method detects two distinct chemodynamic populations with high significance (in logarithmic Bayes factor, ln B ∼ 33). The metal-rich ([Fe/H] = −2.05 ± 0.03) population is kinematically colder (radial velocity dispersion of $\sigma _v=4.9_{-1.0}^{+0.8} \, \mathrm{km} \, \mathrm{s}^{-1}$) and more centrally concentrated than the metal-poor ($[{\rm Fe/H}]=-2.29_{-0.06}^{+0.05}$) and kinematically hotter population ($\sigma _v =11.5_{-0.8}^{+0.9}\, \mathrm{km} \, \mathrm{s}^{-1}$). Furthermore, we apply the same analysis to an independent Multiple Mirror Telescope (MMT)/Hectochelle data set and confirm the existence of two chemodynamic populations in UMi. In both data sets, the metal-rich population is significantly flattened (ϵ = 0.75 ± 0.03) and the metal-poor population is closer to spherical ($\epsilon =0.33_{-0.09}^{+0.12}$). Despite the presence of two populations, we are able to robustly estimate the slope of the dynamical mass profile. We found hints for prolate rotation of order ${\sim}2 \, \mathrm{km} \, \mathrm{s}^{-1}$ in the MMT data set, but further observations are required to verify this. The flattened metal-rich population invalidates assumptions built into simple dynamical mass estimators, so we computed new astrophysical dark matter annihilation (J) and decay profiles based on the rounder, hotter metal-poor population and inferred $\log _{10}{(J(0{^{\circ}_{.}}5)/{\rm GeV^{2} \, cm^{-5}})}\approx 19.1$ for the Keck data set. Our results paint a more complex picture of the evolution of UMi than previously discussed. 
    more » « less